Andhra Pradesh Human Resource Development Institute 3 Day Residential Training Programme on Management Information Systems

Hardware, Software and Networking

Prof. Y.K. Sundara Krishna Principal Krishna University

#### Next Generation Network Systems



# Next Generation Services & Advantages

- Location based Services
- Dynamic Services
- Separation of Transport and Service
- Heterogeneous Network Support
- Supports multiuser on single SIM
- Single SIM supports multiple networks

# Next Generation Services & Advantages

- Integrates
  - Computing,
  - Communication,
  - Entertainment,
  - Presentation
  - Storage & Retrieval
  - and Fault Tolerance Systems

#### **Future Networks**

Data Centric Network

Sender MobilityReceiver MobilityNetwork Mobility

# Network Computing Systems

- Network Computing Systems are connection of
  - Autonomous,
  - Heterogeneous,
  - Intelligent Systems

in Dynamic, Distributed and Mobile Environment

#### **Network Computing**

 Design of Computing Algorithms for Network Computing Systems is major issue

## Layers of Computer Systems

User Programs

**Operating System Interface** 

**Operating System** 

Hardware Interface

Hardware

#### **Functional Boundaries Computing Systems**

| Heterogeneous<br>Applications                               | Application Layer  |
|-------------------------------------------------------------|--------------------|
| Mechanisms for Security<br>Aspects                          | Presentation Layer |
| Operating System,<br>Device Drivers & OS<br>interface       | Session Layer      |
|                                                             | Transport Layer    |
|                                                             | Network Layer      |
| Hardware of Computer<br>System& Hardware<br>Interface(BIOS) | Data Link Layer    |
|                                                             | Physical Layer     |

#### **Layer wise Procedures and Protocols**

|                 | Data Unit           | Layer        | Functions                                                                                                                           |
|-----------------|---------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Host<br>Layers  |                     | Application  | Network process to application                                                                                                      |
|                 | Data                | Presentation | Security Issues Data representation,<br>encryption and decryption, convert<br>machine dependent data to machine<br>independent data |
|                 |                     | Session      | Inter host communication, manage sessions between applications                                                                      |
|                 | Segments            | Transport    | End to End connection, reliability and flow control                                                                                 |
| Media<br>Layers | Packet/<br>Datagram | Network      | Path determination and logical addressing                                                                                           |
|                 | Frame               | Data Link    | Physical addressing                                                                                                                 |
|                 | Bit                 | Physical     | Media, signal and binary transmission                                                                                               |

#### **Layer wise Procedures and Protocols**

#### OSI model

7. Application layer

NNTP · SIP · SSI · DNS · FTP · Gopher · HTTP · NFS · NTP · SMPP · SMTP · SNMP · Telnet · DHCP · Netconf · (more)

> 6. Presentation layer MIME · XDR

> > 5. Session layer

Named pipe · NetBIOS · SAP · PPTP · RTP · SOCKS · <u>SPDY</u> · TLS/SSL

4. Transport layer TCP · UDP · SCTP · DCCP · SPX

3. Network layer IP (IPv4 · IPv6) · ARP · ICMP · IPsec · IGMP · IPX · AppleTalk

#### 2. Data link layer

ATM · SDLC · HDLC · CSLIP · SLIP · GFP · PLIP · IEEE 802.2 · LLC · L2TP · IEEE 802.3 · Frame Relay · ITU-T G.hn DLL · PPP · X.25

#### 1. Physical layer

EIA/TIA-232 · EIA/TIA-449 · ITU-T V-Series · I.430 · I.431 · PDH · SONET/SDH · PON · OTN · DSL · IEEE 802.3 · IEEE 802.11 · IEEE 802.15 · IEEE 802.16 · IEEE 1394 · ITU-T G.hn PHY · USB · Bluetooth · RS-232 · RS-449

Courtesy: Wikipedia - <u>http://en.wikipedia.org/wiki/OSI\_model</u>

#### **Computer Programming**

- Basic Input Output Systems (BIOS)
- Assemblers/Compilers /Interpreters
- Editors/Loaders /Linkers
- Operating Systems
- Device Drivers
- Integrated Programming Development Environments
- Tools
- General & Specific Applications

# Stages in Programming Development

- Detailed requirement-input/output
- Design & Modeling
- Implementation in one or more languages
- Test patterns at various levels
- Product Integration
- Addressing compatibility issues
- Documentation
- User & Programmer Guides
- Alpha & Beta version Product delivery
- Field Problems & Release of Patches
- New versions of Product



# Design Approaches of Operating Systems

Policy Vs Mechanism

- Policy : What should be done ?
- Mechanism : How it should be done?

Good Operating System

 A good operating system design must separate Policies from Mechanisms

#### Design Approaches of Operating System

• Layered Approach

Divides the operating system into several layers

• The Kernel based approach

Kernel is collection of primitive facilities over which rest of Operating System is built

 <u>The Virtual Machine approach</u>
 VM software on bare hardware gives illusion of whole system sole disposal of each user

#### Unix Layered Approach



#### Block Diagram of Unix Architecture



## **DOS Operating System**

- lo.sys
- System.sys
- Command.com
- External commands
- System Programs
- Application Programs

#### **Programming Interface of Windows**



#### Windows 98 Architecture



Hardware

#### Windows 2000 Structure



#### Windows NT Architecture



#### Windows NT OS Structure

- HAL and kernel written in C and assembly
- Upper layers written in C; device drivers in C, some in C++
- HAL
  - Layer to hide many of the machine dependencies
  - Operating with abstract hardware devices is in form of machine-independent services
  - HAL does not provide: services to I/O devices such as keyboard, disk, mice.

# Unix Vs Windows

#### • Unix

- Multi user-Multi Tasking
- Layered approach
- Text based
- Well Structured Directory
- Tuning parameters in Text Files
- Static Libraries
- Static Linking
- Dynamic Loading
- Round Robin

# Unix Vs Windows

- Windows
  - Single user-Multi Tasking
  - Kernel based approach
  - Binary files (different formats)
  - Limited structuring
  - Tuning parameters in Text / Binary Files
  - Static & dynamic Libraries
  - Static & dynamic Linking
  - Static & Dynamic Loading

#### General Issues in Windows

- Not well tested kernel
- DLLs can be replaced by different vendors with new versions
- Memory Conflicts among applications
- Unused Memory Garbage collection
- Lack of File level Security unlike unix
- Friendly network and remote access

#### Authentication Vs Authorization

Authentication

• In authentication is process of proving identity of user in system

Authorization

- Authorization is a process determining permission of a user
  - to use a resource
  - or access a file.

#### Next Generation Network Systems



### **Communication Technologies**

#### – Wired Technologies

- High Bandwidth
- Limited Channels
- Costly for Establishment & Maintenance
- High SNR

#### - Wireless Technologies

- Low Bandwidth
- Unlimited Channels
- Economical for Establishment & Maintenance
- Low SNR results less clarity

#### Access Networks in NGN

| Access Network | Technology used            |
|----------------|----------------------------|
| Cellular 2G    | GSM, GPRS, EDGE, CDMA      |
| Cellular 3G    | UMTS, UMTS+HSPA, CDMA 2000 |
| Cellular 4G    | LTE                        |
| Wireless LAN   | Wi-Fi                      |
| Wireless MAN   | WiMAX                      |
| Wireless PAN   | Bluetooth                  |

### Metrics for Quality of Service

|                             | -                                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------|
| Throughput                  | Average rate of successful delivery                                                                   |
| Latency                     | Time taken for sending a data frame                                                                   |
| Jitter                      | Variation in time transit delay                                                                       |
| Bit Error                   | One or more bits of data fail to reach destination                                                    |
| Signal to Noise Ratio (SNR) | Power ratio between signal<br>(meaning full information)<br>and background noise<br>(unwanted signal) |

#### **TCP/IP** architecture- Internet layer



- 1. Transfer of information across networks through gateways/routers
- 2. Corresponding to OSI network layer: routing and congestion control
- 3. Global unique IP address and IP packets
- 4. Best-effort connectionless IP packet transfer: no setup, routed independently, robust, out of order, duplicate, or lose of packet



#### **TCP/IP network architecture**



#### \*\* TCP/IP model does not require strict layering

# Performance of Higher Layer Solutions

- Involve lot of Mathematical Computations
- Any solution can be breakable in short duration
- Degrading the performance of the Next Generation Network Systems

# Lower Layer Solutions

- Modified TCP/IP Protocols
- Incorporating New Hardware
- Incorporating OS interface
- Service Oriented Architecture
  NGN Systems for Security

Services

#### **Goal of Education**

- Learning Marketable Skills
- Developing New Concepts
- Developing New Technologies
- Storing & Maintaining Knowledge
- Developing Information Center
- Practicing & Developing Ethics and Values in Society

# ICT in Education

- Useful as a Tool for
  - Availability of Information
    - at any Place,
    - at any Time
    - and at any Where(Situation)
  - Presenting Concepts
  - Demonstrating Practicals
  - Clarity in information
  - Dynamic Storing & Retrieving of information

#### **Nature by Numbers**



# Phi



Geetha A Way to Reach the GOD

- Do real research
  Narada Vs Sanathkumarudu
- Do work

Narada Vs Vishnu

#### Answer following questions

- Who is human being?
- What is real richness?
- What is human Life?
- How to Live in Society?
- What is the necessity of Value Added Social Culture?

Value Added Social Culture is Real Real Goal of Education

- No Cyber Crimes
- No Need of Security Measures
- One can concentrate on real Research

Indian Philosophical Life is Great in the World

#### Thank You

